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Abstract

A number of vital biological processes rely on fast and precise recognition of
a specific DNA sequence (site) by a protein. How can a protein find its site
on a long DNA molecule among 106–109 decoy sites? Here, we present our
recent studies of the protein–DNA search problem. Seminal biophysical works
suggested that the protein–DNA search is facilitated by 1D diffusion of the
protein along DNA (sliding). We present a simple framework to calculate the
mean search time and focus on several new aspects of the process such as
the roles of DNA sequence and protein conformational flexibility. We
demonstrate that coupling of DNA recognition with conformational transition
within the protein–DNA complex is essential for fast search. To approach
the complexity of the in vivo environment, we examine how the search can
proceed at realistic DNA concentrations and binding constants. We propose
a new mechanism for local distance-dependent search that is likely essential
in bacteria. Simulations of the search on tightly packed DNA and crowded
DNA demonstrate that our theoretical framework can be extended to correctly
predicts search time in such complicated environments. We relate our findings
to a broad range of experiments and summarize the results of our recent single-
molecule studies of a eukaryotic protein (p53) sliding along DNA.

PACS numbers: 87.15.kj, 87.10.−e, 87.15.rp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. The protein–DNA search problem

Many biological processes are initiated by a single protein binding its specific target sequence
(target site) on a long DNA molecule. In the search for its target sequence, such a protein
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is faced with two difficulties, one thermodynamic and the other kinetic. The thermodynamic
challenge lies in recognizing and tightly binding the target site among the billions of other non-
specific DNA sequences. The kinetic difficulty is finding the target site in mere seconds amidst
the crowded cellular environment filled with other DNA sequences and proteins. A wide variety
of biophysical studies have contributed to a deeper understanding of the thermodynamics of
protein–DNA interactions. However, little is known about the kinetics of the search process
and the roles of DNA sequence, DNA spatial organization and other DNA-bound proteins.

1.2. History of the problem: experiment

The problem of how a protein finds its target site on DNA has a long history. In 1970, Riggs
et al [1] measured the association rate of the Lac repressor and its target site on DNA as

kexp = 1010 M−1 s−1.

This astonishingly high rate, which is 100–1000 times higher than any known protein–protein
association rate, was also shown to be much higher than the maximal rate of protein–DNA
association achievable by diffusion in solution.

Indeed, binding of a protein (P) to a target site (S) on DNA is a bimolecular association
reaction

P + S � PS

characterized by its rate ka which is defined macroscopically (and measured experimentally) as
a coefficient in d[PS]

dt
= ka[P][S]. The expression for the diffusion-limited rate of bimolecular

reactions was obtained by Smoluchowski and in the case of protein–DNA association has the
form

kSmol = 4πD3Dba, (1)

where D3D is the diffusion coefficient of the protein (assuming the site on DNA diffuses much
more slowly than the protein), b is the cross-section of the binding reaction and a is the fraction
of the molecular surface (of the protein) that contains the reactive binding interface. With this,
let us estimate the value of the diffusion-limited rate kSmol. We should set b = 0.34 nm, the
spacing between the base-pairs of DNA, since displacement by a single base-pair (bp) leads to
a different DNA sequence recognized by a protein (figure 1). Measured diffusion coefficients
of proteins in aqueous environments have a range of D3D ≈ (1–5) × 10−6 cm2 s−1. We can
assume a relatively large a ≈ 0.2–0.5, since a protein has a relatively large reactive interface
and is likely to become oriented correctly as it approaches the DNA by the electrostatic
interactions of basic amino acids with negatively charged DNA. Using these numbers and
converting to ‘moles per liter’ by multiplying by the Avogadro constant we obtain

kSmol ≈ 2 × 10−19 m3 s−1 ≈ 108 M−1 s−1.

For comparison, the rates for most protein–protein associations (under physiological salt
concentrations, i.e., under well-screened electrostatic interactions) are in the range of
106–107 M−1 s−1 [2] and are indeed well below the Smoluchowski diffusion limit. This
comparison demonstrates that the protein–DNA search is about 100 times faster than the
diffusion limit and about 1000 times faster than bimolecular associations of protein molecules,
suggesting that some special mechanism, referred to as facilitated diffusion, provides this
speed-up.
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Figure 1. (A) Schematic representation of the protein–DNA search problem. The protein (yellow)
must find its target site (red) on a long DNA molecule confined within the cell nucleoid (in bacteria)
or cell nucleus (in eukaryotes). Compare with figure 9(A) which shows confined DNA. (B) The
target site must be recognized with 1 base-pair (0.34 nm) precision, as displacement by 1 bp results
in a different sequence and consequently a different site.
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Figure 2. (A) The mechanism of facilitated diffusion. The search process consists of alternating
rounds of 3D and 1D diffusion, each with average duration τ3D and τ1D, respectively. (B) The
antenna effect [9]. During 1D diffusion (sliding) along DNA, a protein visits on average n̄ sites.
This allows the protein to associate some distance ∼n̄ away from the target site and reach it by
sliding, effectively increasing the reaction cross-section from 1bp to ∼n̄. The antenna effect is
responsible for the speed-up by facilitated diffusion.

1.3. History of the problem: theory

To resolve this discrepancy, one possible mechanism of facilitated diffusion that includes both
3D diffusion and effectively 1D diffusion of protein along DNA (the 1D/3D mechanism) was
suggested. This mechanism was first proposed and dismissed by Riggs et al [1] but was soon
revived and rigorously studied by Richter and Eigen [3], then further expanded and corrected
by Berg and Blomberg [4] and finally developed by Berg et al [5]. The basic idea of the 1D/3D
mechanism is that while searching for its target site, the protein repeatedly binds and unbinds
DNA and, while bound non-specifically, slides along the DNA, undergoing one-dimensional
(1D) Brownian motion or a random walk. Upon dissociation from the DNA, the protein
diffuses three dimensionally in solution and binds to the DNA in a different place for the next
round of one-dimensional searching (figure 2(A)).

During 1D sliding the protein is kept on DNA by the binding energy to non-specific
DNA. This energy has been measured for several DNA-binding proteins and has a range
of 10–15 kBT (at physiological salt concentration), was shown to be driven primarily by
screened electrostatic interactions between charged DNA and protein molecules [6], and
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is thus highly sensitive to the concentration of salt ions. The microscopic mechanism
of protein–DNA translocation and events that trigger protein dissociations are yet to be
understood.

1.3.1. Open questions. Despite significant progress made by early theoretical studies
in explaining faster-than-diffusion search and a broad range of experimental observations,
aspects of the protein–DNA search from the molecular to the cellular levels remained poorly
understood:

• Molecular level—DNA sequence and protein conformation. The role of DNA sequence in
the search process remains largely unexplored. The sequence-specific energy of protein–
DNA binding leads to a rugged energy landscape for protein translocation along DNA.
How fast can a protein slide and search despite of this ruggedness?
DNA-binding proteins exhibit complex intramolecular dynamics that can influence the
efficiency of the search process, e.g. commonly observed coupling of folding and binding.
How does conformational transition affect search?

• Spatial effects. What is the molecular mechanism of protein translocation along DNA?
Does a protein intermittently dissociate from and then re-associate to DNA while
undergoing Brownian motion (hops) or does it stay on DNA for long periods of time
(sliding)? And after dissociating from DNA, the protein undergoes a round of 3D
diffusion before binding DNA again (a jump). How far along DNA does the protein re-
associate? Do the statistics of the jump lengths P(x) resemble the Levy flight distribution
P(x) ∼ x−α (1 < α < 3)?

• Cellular level. How does the search proceed in the cell? This question has become
the central focus of many studies as single-molecule methods have made it possible to
observe binding of single proteins in the cell. What is the role of the spatial organization
of DNA? How fast is search in the cell where molecular crowding and highly complex
DNA conformation can slow protein movement? What is the role of other DNA-bound
proteins and DNA packing in chromatin?

Ultimately, we would like to understand the extent to which the protein–DNA search
is facilitated in vivo, whether the remarkable physical mechanism of facilitated diffusion is
essential for cell physiology, and whether the mechanism is universal for all DNA-binding
proteins, both in prokaryotic and eukaryotic cells.

Recent theoretical studies of protein–DNA search include work by Halford and Marko
[7], Coppey et al [8], Hu et al [9–11], Lomholt et al [12, 13] and other groups [14–16]. All
these studies used the 1D/3D mechanism of facilitated diffusion as a basic framework.

Here we review several studies from our group and discuss them in the context of other
experimental and theoretical results. We start by presenting the single-molecule theoretical
approach [17] that our group has been developing (sections 2.1–2.1.2). Next we turn to a
study concerned with the role of DNA sequence [17] (section 3.1) and arrive at the important
speed-stability paradox (section 3.2), which suggests the essential role of conformational
transitions in DNA-binding proteins [17]. We discuss our studies of the conformational
transition in section 4.1, the mechanism of kinetic pre-selection (section 4.2) and the landscape
model (section 4.3). The role of spatial effects examined in our recent works [18, 19] is
discussed in section 6, where new and previously unpublished study of the search on the DNA
molecule confined into a small volume is presented in section 6.3. We also present previously
unpublished analysis of the search on crowded DNA (section 6.4).
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2. Search on DNA

2.1. Theory: a single-molecule approach

In spite of this rich history, most of the analytical studies of facilitated diffusion remained
rather complicated. Here we present our original approach which is rather transparent and
intuitive. Consider a single protein searching for a single target site on a long DNA molecule
of M bps by the 1D/3D mechanism. The search consists of multiple rounds, each consisting
of one round of 1D diffusion followed by one round of 3D diffusion. Then the total search
time is given by

ts =
k∑

i=1

(τ1D,i + τ3D,i ),

where τ1D,i and τ3D,i are the durations of 1D and 3D diffusion in the ith round of searching,
and k is the number of rounds until the target site is found. The mean search time is then

t̄s = K̄(τ1D + τ3D),

where τ1D and τ3D are the mean durations of 1D and 3D diffusion rounds, and K̄ is the mean
number of rounds until the target is found.

It is easy to estimate the average number of rounds until the target site is found among
M alternatives. If during each round of sliding the protein scans n̄ � M sites, the probability
that site is found in a single round is p = n̄/M . If each time the protein re-associates with
the DNA, it does so uniformly along the DNA, i.e., scanning independent sets of n sites, the
probability of finding the target (for the first time) on the kth round is given by the geometric
distribution (1 − p)K−1p. The mean number of 1D/3D rounds is then K̄ = 1/p = M/n̄,
yielding the mean search time

t̄s = M

n̄
(τ1D + τ3D) . (2)

If 1D sliding proceeds by normal (non-anomalous) diffusion, then n̄ ∼ √
D1Dτ1D, where D1D

is the diffusion coefficient of sliding. For an exponentially distributed 1D time with a mean of
τ1D we obtained the mean number of visited sites (the distance between the left- and right-most
visited sites) [19]

n̄ = 2
√

D1Dτ1D. (3)

Equations (2) and (3) together provide a simple expression for the search time as a function
of macroscopic measurable parameters τ3D,D1D and n̄ (or τ1D). Note that τ3D in turn depends
on the spatial diffusion coefficient D3D and DNA density.

2.1.1. Immediate results. First, one can calculate the optimal partitioning of time between
1D and 3D diffusion modes during the search process. Plugging n̄ ∼ √

D1Dτ1D into (2) and
setting dt̄s/dτ1D = 0, we found that the fastest search is achieved if τ1D = τ3D yielding the
optimal search time

t̄opt = 2M

n̄
τ3D = M

√
τ3D

D1D
. (4)

Second, one can easily calculate the magnitude of the speed-up due to 1D/3D facilitated
diffusion, as compared to a 3D-only or 1D-only mechanism. To obtain the mean search time
for 3D diffusion alone, we set τ1D = 0 and n̄ = 1, yielding t̄3D = Mτ3D. Comparison
with equation (4) shows that facilitated diffusion is n̄/2 times faster. The search time by 1D
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diffusion alone is t̄1D ∼ M2

D1D
, which is ∼M

n̄
slower than the optimal search time by facilitated

diffusion (equation (4)).
Let us briefly consider an example. For a bacterial genome of M = 5 × 106 bps and a

sliding length of n̄ = 200 – 500 bps (e.g. [20]), facilitated diffusion provides the necessary
speed-up by a factor of ∼102 as compared to diffusion-limited search. Search by 1D sliding
alone is extremely inefficient, being ∼104 times slower than optimal facilitated diffusion.

Note that the latter results are obtained assuming optimal 1D/3D partitioning τ1D = τ3D

that, as we demonstrated [18], is not achieved in the cell due to high DNA concentration
and high protein affinity for non-specific DNA (see below). Note also that if the search for
the target site is performed simultaneously by m protein molecules, the mean search time is
approximately m times smaller [17, 19].

2.1.2. Connection to the Smoluchowski equation: speed-up and slow-down. It is easy to see
how the formalism presented above is connected to the Smoluchowski rate for bimolecular
reactions. The rate and the mean time of the search process are connected by t̄s = 1

ks [T ] , where
[T ] is the concentration of the target sequence, which is related to the total DNA concentration
[T ] = [DNA]/M . Note that τ3D is the mean diffusion-limited time experienced by the protein
before it interacts with any region of DNA, and thus, τ3D = 1

kSmol[DNA] . Using these expressions
and equation (2) for the mean search time we arrive at the rate of the search reaction

ks ≈ kSmol

(
τ3D

τ1D + τ3D

)
n̄ = 4πD3D

(
τ3D

τ1D + τ3D

)
n̄a. (5)

Two aspects of the search process become transparent from this equation. First, the
acceleration of search by sliding effectively increases the cross-section from b = 1 bp to n̄

base-pairs of DNA, allowing the protein to reach the target site by associating with n̄ base-pairs
around it. Hu et al [9] called this the antenna effect (figure 2(B)). The second effect is the
slow-down due to non-specific binding of the protein to DNA. While searching for its target,
the protein spends a certain fraction of its time bound to DNA far from the target and thus,
not diffusing in 3D. This effect is manifested by the factor τ3D/τ1D + τ3D, which is the fraction
of time the protein spends diffusing in 3D. Thus, binding non-specifically to DNA leads to
a reduction of spatial mobility, which can be taken into account by an effective diffusion
coefficient D3D,eff = D3Dτ3D/τ1D + τ3D.

Importantly, the slow-down term depends upon a protein’s affinity for non-specific DNA
and the DNA concentration, but not upon the rate at which it slides along DNA. The speed-up
term n̄ ∼ √

D1Dτ1D, in contrast, depends on the absolute time spent in each round of sliding
and the diffusion coefficient of sliding. Taken together the two effects can lead to speed-up
(up to ∼n̄ times) or slow-down as compared to the search by 3D diffusion alone. A similar
observation that 1D/3D mechanism can lead to a slow search was made by Hu et al [9].

2.2. Single-molecule experiments

Several lines of experimental evidence support the 1D/3D search mechanism. These include
experiments which demonstrated that the rate of site-specific binding is significantly increased
by lengthening non-specific DNA surrounding the site (the antenna effect) and numerous
elegant biochemical experiments supporting the role of 1D sliding in the search process
[20–25]. The most direct experimental approach is the real-time observation of individual
proteins sliding along DNA. By mechanically stretching DNA molecules and monitoring
the movement of individual, fluorescently labeled proteins along DNA, single-molecule
approaches have successfully characterized facilitated diffusion of repair proteins Msh2–
Msh6, Ogg1 and Rad51, [26–28] as well as transcription factors LacI [29] and p53 [30].
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(A)

(B) (C)

Figure 3. (A) The kymogram (a series of microscopy images) of protein sliding. A long DNA
molecule is stretched (not visible) along the y-axis. The figure presents a series of images taken at
high speed of a single labeled p53 molecule moving along DNA. (B) Trajectories of sliding shown
for two proteins, as extracted from a series of microscopy images. (C) Mean-squared displacement
of the proteins as a function of time, shown for two trajectories from (B) and 13 other trajectories.
Note that the mean-squared displacement is linear, demonstrating non-anomalous diffusion. The
diffusion coefficient is extracted from the slope of these lines.

In vivo imaging allowed the monitoring of 1D/3D diffusion of LacI in single bacterial cells
[21]. While experimental evidence of the 1D/3D mechanism is overwhelming, detailed
quantitative characterization of this process so far has been limited to very few proteins.

Single-molecule characterizations of DNA-binding proteins have given three interesting
results. First, they demonstrated that protein sliding along DNA proceeds by normal (non-
anomalous) diffusion. Figure 3 presents results of single-molecule tracking on a stretched
DNA (van Oijen lab [30]). Obtained diffusion coefficients for 1D sliding of transcription
factors, such as LacI and p53 [29, 30] have fallen in the range of

D1D ≈ 105–106 bp2 s−1 = 10−10–10−9 cm2 s−1,

which is within an order of magnitude or two of the limit of ≈107 bp2 s−1 calculated
from the Stokes–Einstein equations with a correction for the helical rotation of the protein
as it tracks the pitch of the DNA. The factor of ∼10 difference suggests that the protein
has to overcome relatively small free energy barriers ∼1–2 kBT as it slides along DNA.
Experimentally obtained diffusion coefficients suggest that a protein can slide over a range
as long as n̄ ≈ 100–5000 bps if it stays bound to non-specific DNA for τ1D ∼ 0.01–5 s,
as was measured by in vivo FRAP experiments for a range of eukaryotic DNA-binding
proteins [31].

The second result concerns the mechanism of sliding. It was suggested that proteins can
hop along DNA by dissociating and re-associating close by, movement that, at the resolution
of the relevant single-molecule studies, resembles sliding of a protein along DNA. To test this
mechanism we studied sliding of p53 along DNA at different salt concentrations [30]. Since
monovalent salt ions bind DNA electrostatically, they effectively destabilize protein–DNA
complexes. If hopping were the mechanism of translocation, faster 1D diffusion would be
expected at high salt concentrations. We observed, however, that KCl had no effect on the
diffusion coefficient, while leading to a decrease in the residence time on DNA with high salt
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Figure 4. (A) Model of the 1D sliding: a protein can slide along DNA or dissociate.
(B) The sequence-dependent energy landscape of sliding. Protein–DNA binding energy depends on
sequence, thus forming the landscape. Two parameters determine protein dynamics: the roughness
of the energy landscape σ and the (free) energy of non-specific binding to DNA, Ens.

concentration, as expected. These experiments demonstrated that p53 slides along DNA while
maintaining constant contact with the DNA molecule [30].

The third surprising result is that sliding is observed not only for proteins from bacteria
or mitochondria (e.g. bacterial LacI and mitochondrial Ogg1 [29, 26]) where DNA is mostly
naked, but also for a eukaryotic protein p53 [23, 30]. In eukaryotes, DNA is tightly packed
and bound by myriad other proteins, leaving little space for proteins to slide. Observed sliding
by a eukaryotic proteins suggests that the mechanism of facilitated diffusion can occur in
eukaryotes despite other DNA-bound proteins and DNA packing. In section 6.4, we present
our previously unpublished analysis of sliding on crowded DNA, i.e. in the presence of other
DNA-bound proteins.

3. Role of DNA sequence and protein conformation

3.1. Diffusion on a rugged landscape

Our group [17, 32] and others [10] have considered the role of DNA sequence in the
process of facilitated diffusion. Since the energy of protein binding depends on the DNA
sequence of the bound fragment, different sequences will have different energies. Thus,
while sliding along DNA, the protein has different energies at different positions along the
DNA, turning sliding into 1D diffusion in an external coordinate-dependent field (figure 4(B)).
Let us consider the sequence-dependent field as a random field with energies independently
and normally distributed. We choose the normal distribution as it closely resembles the
distribution of the protein–DNA binding energies computed using a popular position-weight
matrix approximation [33]. The approximation assumes that bound DNA base-pairs contribute
independently and additively to the total binding energy, making the distribution of energies
for random sequences normal due to the central limit theorem. By averaging the mean-first-
passage time for a 1D random walk over the normally distributed energies, we obtained

D1D ∼ exp

[
−γ

(
σ

kBT

)2
]
, (6)

where γ ∼ 1, and σ 2 is the variance of the protein–DNA binding energy. Such rapid decay of
the diffusion coefficient with the ruggedness of the energy landscape clearly demonstrates that
sliding fast enough to account for experimental evidence is possible only for σ � 1–2 kBT .
Subsequent single-molecule experiments have confirmed this result (see section 2.2).
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Hu and Shklovskii [10] have recently re-examined the effect of disorder on sliding and
suggested two possible regimes of dynamics: macroscopic and mesoscopic ones. The
macroscopic regime is characterized by sliding over sufficiently long distances, leading
to averaging over specific realizations of the disorder (i.e. specific DNA sequence) and is
identical to the regime discussed above with diffusion coefficient given by equation (6). The
mesoscopic regime, in contrast, requires short sliding distances. If the sliding distance is
sufficiently short, transition over a single highest barrier is the rate limiting step that leads to
the diffusion coefficient D1D ∼ exp(−√

n̄σ/kBT ) with less dramatic dependence on σ/kBT .
The suggested acceleration of search due to rare barriers in the mesoscopic regime, however,
requires sufficiently small energy of non-specific binding: |Ens| � σ 2 (in kBT units). This
regime however is unlikely to produce significant acceleration of sliding for the majority of
DNA-binding proteins due to their high affinity for non-specific DNA: Ens ≈ 10–15kBT

[6]. Thus the mesoscopic regime becomes relevant only for σ � 4kBT , when sliding is
prohibitively slow. Our conclusion that fast search on DNA requires smooth sliding landscape
(σ ∼ 1–2kBT ) should hold for most DNA-binding proteins. Consistent with this result
most well-characterized proteins have been shown to slide sufficiently fast with σ ≈ 1–2kBT

[21, 26, 29, 30, 34]. It is possible that some DNA-binding proteins that exhibit short sliding
distance and low affinity for nonspecific DNA can be described by the mesoscopic regime and
can afford to have more rugged landscape.

3.2. The search-stability paradox

We demonstrated that a relatively small variance of the sequence-dependent energy landscape
σ � 1–2kBT can lead to fast sliding and overall fast searching, assuming 1D/3D partitioning
is at its optimal value τ3D = τ1D.

The protein must find its target site sufficiently fast and then stay bound to it. We
demonstrated that the requirements of fast search and stability of the protein–DNA complex
impose different and mutually exclusive constraints on σ (see figure 5). Indeed, the variance
of the sequence-dependent binding energy σ determines not only the rate of sliding, but also
the energy of the target site E0, and hence the equilibrium occupancy of the target site Peq:

Peq = exp(−E0/kBT )∑M
i=1 exp(−Ei/kBT )

,

where energies Ei of individual sites are drawn from a normal distribution with the variance σ 2

and the target site has the lowest energy in the genome E0 = mini=1,...,M{Ei} ≈ −σ
√

2 log M

(M ≈ 106 bp for bacterial genomes). It is easy to see numerically that Pb � 0.25 requires
σ � 5kBT .

In summary, fast searching requires σ � 1–2kBT , while stability requires σ � 5kBT .
The two conditions are mutually exclusive and lead to the speed-stability paradox.

The paradox is analogous to that in protein folding [35, 36]. Analysis and folding
simulations for a random protein demonstrated that at high T the protein is able to fold
by overcoming energy barriers and escaping local minima, but the folded (ground) state is
unstable. At low T, the folded state is stable, but folding becomes prohibitively slow. The
speed-stability paradox in protein folding is resolved by designing sequences that have a
pronounced energy gap between the native folded conformation and the bulk of unfolded ones
[35, 36].

We demonstrated that a similar approach to the speed-stability paradox cannot work for
protein–DNA interactions. The energy gap between the target site and all other (random) sites
is ≈σ

√
4L, where L is the length of the site (i.e. number of strongly interacting base-pairs),
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Figure 5. The speed-stability paradox. (A) The optimal search time for a single protein and
a single target site on the entire bacterial DNA. The lane corresponds to possible values for the
search time depending on parameters of the model and assuming optimal 1D/3D partitioning. Fast
searching is possible only if σ < 2kBT . (B) The equilibrium occupancy of the target site that has
the lowest possible energy among M = 5 × 106 sites. High equilibrium occupancy (i.e. stability
of the protein–DNA complex) requires σ � 5kBT . It is impossible to achieve both fast searching
and stability if the classical model of sequence-dependent protein–DNA interactions applies.

and 4 comes from the total number of possible base-pairs. Due to relatively small L ≈ 5–10,
large energy gaps are unattainable.

We proposed that the presence of (at least) two distinct conformational states in the protein
(or protein–DNA complex) can resolve the paradox, allowing the protein both to slide rapidly
and to form a stable complex with the target site.

4. Coupling of search and the conformational transition

4.1. The two-state model: effective energy gap

Here we consider a search by a protein (generally, a protein–DNA complex) that has two
conformations: the recognition (R) state with σ > 5kBT and the search (S) state that has
σ ≈ 1kBT . In the S state, the protein can slide fast along DNA, while in the R state it
cannot slide far along DNA, but binds the target site tightly. Two additional parameters fully
determine the dynamics of the system: the difference between the mean energy in the two
states �GRS and the rate of transitions between the two states (or the barrier that separates
them). We introduced the model in [17] and further studied in [37].

While simulations were used to study the full model, analytical treatment of a
simplified model described regimes of dynamics with sufficient accuracy and helps to
intuitively understand the system. For this purpose, we assumed constant rates of the
conformational transitions between the states: kS→R and kR→S , and the equilibrium constant
Keq = kS→R/kR→S = exp(−�GRS) (see figure 6). We demonstrated that in this case the
average search time can be calculated explicitly. A similar result was independently obtained
by Hu et al [11].

Similar to [11], we found that the presence of the fast search state S has two opposite
effects on search: it helps to accelerate search by fast 1D sliding in the S state, but it can make
search prohibitively slow if the target site is visited only in the S state and not recognized in the
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Figure 6. (A) The two-state model. The search state has a small ruggedness σ < 2kBT allowing
the protein to slide rapidly. The recognition state has σ > 5kBT required for tight binding. Higher
mean energy of the recognition state ER > ES is required for the protein to spend most of the
time sliding and occasionally sample rare sites that have ER(i) < ES(i). (B) Results of the search
simulations for the uncorrelated two-state model (dashed line) and correlated model of kinetic
pre-selection (solid line). The search time is shown as a function of the rate of R → S transition
(the X-axis is reversed: from high to low). A sufficiently high rate of the transition is required
for fast searching. Kinetic pre-selection allows fast searching even for sufficiently slow transition
rates (∼103 s−1). (C) A diagram illustrating the correlated two-state model required for kinetic
pre-selection.

R state. The more time the protein spends in the S state, the more significant the acceleration
is, but the more likely the protein misses the target site while sliding pass it in the S state.

Assuming that the protein cannot slide in the R state, only the fraction of time spent in
the S state

(
1/

(
1 + K−1

eq

))
contributes to sliding. The second effect can be characterized by

the probability Pf of recognizing (not missing) the site upon sliding in its vicinity. The total
search time needs to be multiplied by the average number of times the global search need to
be repeated until recognition, i.e. 1/Pf . Taking both effects into account we obtain

t̄s = M

n̄

1

Pf

(τ3D + τ1D) , n̄ =
√

4D1Dτ1D

1 + K−1
eq

(7)

This probability Pf determines the efficiency of search: for Pf ≈ 1 the target is recognized
(i.e. visited in the R state) in the first search round that visits the site, while for Pf � 1 the
protein is unlikely to recognize the site upon the first arrival and many more rounds of search
are required.

The probability Pf, in turn, depends on the total time the protein spends on the target
site while sliding in its vicinity ∼τ1D/n̄ and the transition rate kS→R . A slow transition
(kS→Rτ1D/n̄ � 1) leads to low probability of recognition Pf and significant slow-down of the
search process. This effect is evident from figure 6 which presents results of simulations as
compared to theoretical predictions of equation (7). In agreement with the theory, simulations
demonstrate a transition from fast to slow search at kS→Rτ1D/n̄ ≈ 1.

The two-state model allows for the reconciliation of stability with fast search, but
requires the protein to undergo a sufficiently fast conformational transition (faster than
� n̄/τ1D � 3 · (103–104) s−1). Several DNA-binding proteins have been shown to undergo

11



J. Phys. A: Math. Theor. 42 (2009) 434013 L Mirny et al

conformational transitions upon binding to the target site [38–41] with rapid transition rates
comparable to the estimate given above [42].

In addition to a sufficiently fast conformational transition, the two-state mechanism
requires that the specific binding conformation of the protein–DNA complex (state R), which
is favorable when the protein is on the target site, be generally unfavorable elsewhere—that
is, the mean energy in the R state must be much higher than that of the S state (figure 6).
This entails that most of the time the protein spends in the S state, which has little sequence-
dependent variance σS ≈ 1kBT , and is thus sliding fast. This effectively creates a landscape
with small ruggedness and a few low-energy sites with ER(i) < ES(i). Such landscape was
postulated by Gerland et al [43] who demonstrated that it provides fast search and satisfied
thermodynamic requirements of tight and ‘programmable’ binding.

Such a landscape picture is also consistent with recent microfluidic measurements of the
binding energy for the yeast Cbf1 protein to all possible short DNA sequences [44]. The
experiment demonstrated that the binding energy has little sequence dependence for sites
differing significantly from the target site. The requirement of the model that the R state has
an average energy above that of the S state, is consistent with significant deformation of DNA
by proteins bound to their target sites. In agreement with our model, the structure of Lac
repressor bound to non-specific DNA (i.e. in the S state) [39] shows no DNA deformation and
very few contacts between the protein and the nucleobases, suggesting small sequence-specific
contribution to the energy, and hence small σ in the S state.

4.2. Kinetic pre-selection

We demonstrated [37] that the process of search by a two-state protein can be much more
efficient if the protein can undergo the transition most readily at the target site, entailing that
Pf be close to 1 while keeping n̄ sufficiently large in equation (7). We proposed the kinetic
pre-selection mechanism which is capable of achieving this search-expediting behavior.

The central idea of kinetic preselection is that the S and R landscapes are correlated
(see figure 6(C)). Then for each site i, ES(i) = ER(i)σS/σR − �GRS (�GRS > 0). If the
landscapes are correlated, a deep minimum in the R state corresponds to a local minimum in
the S state, entailing that the protein stay longer at the site while sliding, and hence increasing
the probability of the conformational transition occurring at such site. This leads to an
effective kinetic pre-selection of low-energy sites, making S-to-R transitions on such sites
more likely. Simulations demonstrate that kinetic pre-selection leads to fast searching even
when the conformational transition is as slow as experimentally observed [42] (figure 6(C)).

4.3. The landscape model

We also examined [37] an interesting generalization of the two-state model is a model system
with a continuum of conformational states, i.e., a reaction coordinate z for the conformational
transition (see figure 7). We introduced this simple system based on the following assumptions:
(i) there is a minimum in the conformational energy at some value z0: E(z) ∼ α(z − z0)

2 and
(ii) the sequence-specific energy decays exponentially with z: E(x, z) ∼ E(x) exp(−z).
These lead to the energy function along DNA (x coordinate) and the conformational
coordinate z:

E(x, z) = E(x) exp(−z) +
α

2
(z − z0)

2,

where E(x) is the sequence-specific binding energy (that is equivalent to the energy in the
R state of the two-state model), and α and z0 are parameters which determine the shape of

12



J. Phys. A: Math. Theor. 42 (2009) 434013 L Mirny et al

(A) (B) (C)

Figure 7. (A) The landscape generalization of the two-state model with z as a reaction coordinate
of the conformational transition and the sequence-specific energy decaying exponentially with
z. (B) The resulting 2D landscape of sliding and conformational transition. With appropriately
chosen parameters, the ruggedness in the sliding valley (z = z0) is small, allowing fast sliding and
occasional transitions into the R state (z = 0). The search time as a function of the conformational
mobility (along the z-axis) is similar to figure 6(B). (C) The cross-section of the landscape
E(x, z) versus reaction coordinate z of the conformational transition. The profiles of energy
for three different sites are shown: the target site (the lower curve), a low-energy site (the medium
curve) and a high-energy site (the top curve). Note that the barrier for transition along the z-
coordinate depends on the energy of the site: the target site has no barrier leading to very fast
transitions and likely recognition from the first arrival Pf ≈ 1 in equation (7).

the landscape. The landscape defined this way, illustrated in figure 7(B), has a ‘groove’ at z0

which corresponds to the S state of the two-state model. Importantly, the two profiles along
the x coordinate in the two states are correlated naturally leading to the kinetic pre-selection
discussed above.

For a proper choice of parameters, the search resembles that of the correlated two-state
model with a noticeable difference: the barrier for the conformational transition is lower at
the low-energy (target) sites, making the transition faster and more likely to happen at such
sites. Figure 7(C) illustrates this observation by showing E(x0, z) versus z profiles for three
sites with different energy at z = 0 (E(x) = E0, E(x) > 0, E(x) ≈ 0). Note that the target
size (lower line) can be reached from the z0 state (where sliding is fast) without a barrier along
the z reaction coordinate. In this model, the search time depends on the effective diffusion
coefficient along the reaction coordinate, requiring sufficiently high conformational mobility
to achieve fast searching (similar to the two-state model figure 6(C)).

Both the kinetic pre-selection and the landscape models lead to effective coupling of the
conformational transition and binding, i.e., a conformational transition in the protein–DNA
complex when the protein binds to the target site. Such coupling of folding and binding has
indeed been detected for a broad range of DNA-binding and other ligand-binding proteins,
but the role of this phenomenon in recognition remained unknown. Our models suggest that
fast searching for a target site among ∼106–109 decoys requires the protein to have at least
two distinct conformations, rapidly exchange between them and exhibit coupling between the
conformational transition and binding to the target. It is possible that these conclusions can
be generalized to other search processes where the target is encoded as a short string to be
detected among a combinatorially large number of possible decoy strings.
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5. Non-specific binding: 1D/3D partitioning

5.1. Non-optimal 1D/3D partitioning in bacteria

Our analysis demonstrated that the fastest search is achieved if τ1D = τ3D. Recently, we studied
whether this condition is satisfied in a bacterial cell. We showed that the partitioning of time
between 1D and 3D depends on proteins’ affinity for non-specific DNA, measured by the
binding constant Kns

d = [P][DNA]/[P · DNA], and upon the intracellular DNA concentration.
High affinity for non-specific DNA measured for a range of bacterial DNA-binding proteins
Kns

d ≈ 10−3–10−6 M [6] and the significant DNA concentration inside a bacterial cell
[DNA] ≈ 10−2 M (assuming 5 × 106 bps confined in micron-sized nucleoid) entail that the
protein spends most of the time on DNA:

τ1D

τ3D
= [DNA]

Kns
d

= 101–104. (8)

This theoretical estimate for the fraction of time on DNA: τ1D/(τ1D + τ3D) � 90% is close to
recent in vivo measurements which estimate this fraction as 87% [21].

5.2. Speed-up and slow-down

Such strong deviation from optimal partitioning has significant implications for the search
process. Substituting this high value of τ1D/τ3D into equation (5) demonstrates that binding
to non-specific DNA leads to significant slow-down of the search process by a factor of
τ3D/(τ3D + τ1D) = 10−1–10−4. This slow-down can be barely compensated by the speed-
up of 1D sliding n̄ = 102–103 term in equation (5), leading to the search time ts ≈ 15–
100 min for ten proteins per cell.

This analysis brings us to the surprising conclusion that the 1D/3D mechanism does not
allow for significant facilitation of the protein–DNA search in bacteria; the speed-up due to
sliding is eliminated by the slow-down due to non-specific binding to DNA. Can proteins
rapidly find their sites in spite of this slow-down? What is the role of this whole mechanism
if it does not provide effective facilitation? A possible answer to the first question is provided
below. A possible answer to the second is that high affinity for non-specific DNA could
be essential for other mechanisms such as equilibrium sequestration of the protein from the
cognate site to non-specific DNA (see [43] and appendix of [18] for more details). Thus
sliding provides a way of facilitating search under conditions of high DNA concentration and
high affinity for non-specific DNA, that otherwise would lead to a very slow search. It is
possible that certain proteins can have low affinity for non-specific DNA and thus would not
benefit from sliding, but can instead accelerate search by large number of copies of this protein
in cell.

6. Spatial effects, DNA conformation and crowding

The process of protein–DNA search is influenced by a broad range of spatial effects. This
includes, among other phenomena, the role of DNA conformation [9] and density [12], hopping
and intersegmental transfer [45], and the dependence of the search time on the initial distance
[18, 19].

Hu et al [9] have conducted the first systematic study that examined the role of DNA
conformation in the search process. Using a continuous diffusion approximation, an approach
complementary to the single-protein view discussed above, the authors examined the search
process and established an elegant analogy to a problem in electrostatics. They identified a
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Figure 8. (A) A mechanism of fast searching by a protein that starts a distance s away from the
target site but close to DNA. (B) A simple model that takes into account such spatial effects as
(i) re-associations to the same strand of DNA (‘hops’) and (ii) associations with other remote
strands of DNA (‘jumps’). For lengths shorter than persistence length of DNA, DNA can be
considered as a straight rod, and the problem of jumps versus hops can be considered as a 2D
problem in the orthogonal cross-section, as shown in the diagram. (C) The search time as a function
of the distance between the initial position of the protein along DNA and the target site: theoretical
lines and simulation datapoints.

wealth of different scaling regimes, found the maximal possible acceleration of search due to
sliding and demonstrated that high DNA concentration in combination with excessive affinity
of proteins for non-specific DNA can lead to a slow-down rather than an acceleration of the
search process. This study also showed that various DNA conformations (e.g. a Gaussian
coil) could promote correlated re-associations (reabsorption) that extends effective antenna
lengths beyond those of individual sliding events. While providing a thorough examination of
scaling behaviors in possible search regimes, this study left several questions open, such as the
possibility of distance-dependent search and the microscopic mechanism of re-associations
(hops) during a single round of sliding.

6.1. Distance-dependent search time

As Polya purportedly told the drunkard wandering the streets looking for his home, ‘You
can’t miss; just keep walking, and stay out of 3D!’ In 3D, diffusion is non-redundant, i.e. the
probability of revisiting a particular site is much less than one [46]. As a consequence of
this property, the average time required to find a particular site does not depend on the initial
position, as long as this distance is greater than the size of the target. In contrast, the time
of search in two dimensions (2D) (e.g. on a membrane) or in 1D (e.g. along DNA or along a
filament) is distance dependent [46]. Therefore, we ask: can the 1D component of facilitated
diffusion make search much faster for proteins starting a small distance from the target site?

Since sliding increases the effective target size by a factor of n̄, we expect fast and
distance-dependent search if the protein starts close to DNA and ∼n̄ bps away from the target
(see figure 8(A)). In other words, if a protein can find its site by sliding along DNA and
not dissociate (i.e. ‘staying out of 3D’), in what we call a local search, the search time will
be dependent on its initial position [19, 18]. The length scale of this effect can be further
increased by re-associations of the protein to DNA, replacing n̄ with some n̄eff > n̄.
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6.2. Re-associations

Models discussed above assume that after a protein dissociates from the DNA, it re-associates
with uniform probability along DNA, i.e. all sites on DNA are equally likely to be the
association site. Scaling arguments of Hu et al [9] support this uniform distribution of landing
points for DNA organized into a random globule. Other DNA conformations, however, can
increase the probability of associating near the dissociation point [9].

As a first approximation, we assume that spatial excursions can be of two extreme types:
hops, short-range dissociations from the DNA in which the protein re-associates in the same
region of DNA at a distance smaller than or equal to its persistence length (150 bp), and jumps,
long-range excursions in which each site of DNA is equally likely to be the re-association
point (see figure 8(B)). Note that associating far (along the contour length of DNA) from
the dissociation point does not necessarily require excursions far in 3D space: jumping onto
a strand that is nearby spatially is likely to achieve this, especially if the DNA is packed
into a random globule (see [9] and simulations below). Thus jumps may also include ‘inter-
segmental transfer’ of the protein from one DNA region to another—a mechanism that is
frequently discussed in the literature but is rather poorly defined microscopically. To calculate
the total search time we coarse-grain hops into a longer sliding distance.

We used simulations and analytical approaches to calculate the probability of a hop (versus
a jump) upon dissociation. Since at a scale smaller than the persistence length the DNA can be
considered as a straight rod, the problem becomes a 2D problem of return to the origin (a hop)
versus being adsorbed by the traps that represent other DNA fragments (see figure 8(B)). We
showed that at intra-bacterial DNA density the probability of a hop Phop ≈ 80–90% entails
that a protein hop for 1/(1 − Phop) ≈ 6–9 times before it dissociates to make a jump. This
makes the effective sliding distance n̄eff = n̄/

√
1 − Phop and thus the span of fast local search

about 2.5–3 times longer.
Upon a jump, the protein is assumed to re-associate uniformly on DNA, allowing us to

use equation (2) with τ1D and n̄ replaced by their effective counterparts that take into account
hops:

ts = M

n̄eff
(τ1D,eff + τ3D). (9)

This equation constitutes a simple modification of equation (2) that allows us to account for
spatial effects such as re-associations and DNA density, which both determine Phop.

Figure 8(C) presents simulation and analytical results for the search time as a function of
the distance s between the target and the initial position of the protein along DNA. Clearly,
the search is much faster at distance s � n̄eff . As s increases the protein is less likely to
find the target by sliding and hopping, and is likely to make a jump to a random location
on DNA, which entails that it performs a global search. When the search is performed by
multiple proteins in parallel (until any one of them binds the site), there is significant gain in
search speed, allowing the starting distance to be much greater with s ≈ 1000 bps.

This result has several important implications. First, it reconciles seemingly conflicting
experimental data: a protein can make a small number of hops, as recently observed
experimentally [22], but slide along DNA in between the hops, as evident from single-
molecule experiments [25, 30]. Second, the mechanism of fast searching by a protein that
starts close to its target can be relevant for protein–DNA search in bacteria. Indeed, proteins
are produced close to the location of the gene encoding it [47]. Thus, if a gene encoding a
DNA-binding protein is located close to the target site of this protein, then the search can be
very fast. We demonstrated that in agreement with this conjecture, genes encoding bacterial
transcription factors have a tendency to be located close to the targets of these factors [18].

16



J. Phys. A: Math. Theor. 42 (2009) 434013 L Mirny et al

10
2

10
4

10
6

10
2

10
4

10
6

10
8

s[nm]

d
is

ta
n
ce

2
[(
n
m

)2
]

gaussian coil
stretched DNA
L = 1000μm, R0 = 500nm
L = 100μm, R0 = 180nm
L = 12�5μm, R0 = 100nm

(B)

(C)

(A)

Figure 9. Compact DNA conformations obtained by Monte Carlo methods to simulate search inside
dense DNA globule. (A) An example of the DNA globule obtained by simulating confinement
of 3 × 106 bps (1000 μm) of DNA inside a spherical volume of R0 = 500 nm. The DNA is
modeled by 40 000 rods (two per persistence length) with the bending energy set to obtain the
correct persistence length. The inset shows the high density of DNA inside the globule. (B) The
radial DNA density of obtained globules, compared to that of the Gaussian coil (averaged over
1000 conformations). Note the nearly uniform density inside the globules is in agreement with
the theory [50]. (C) Mean-squared distance between monomers with distance s apart along the
chain for obtained globules, the Gaussian coil and straight DNA. As expected for an ideal globule
[50], for s < R0 the chain inside the globules behaves as the Gaussian coil, while for s > R0 the
mean-squared displacement is constant due to the confinement.

6.3. The role of DNA conformation

In the models presented above, we attempt to describe the search process more realistically
by including hops. However, we still assume that jumps are completely randomizing. The
compact conformation of DNA can make jumps non-uniform as well, e.g. making it more
likely for a protein to re-associate with DNA a certain distance away from a dissociation point
(but much further than a hop). To better test how DNA conformation influences the search
process, we performed large-scale simulations of long DNA molecules confined in a small
volume. Using these simulations we tested whether possible correlated re-associations can
lead to significant deviations from the theory [48].

We modeled the DNA conformation inside a bacterial nucleoid as a semiflexible chain of
5 × 106 bps confined to a spherical volume 1 μm in diameter (see figure 9). The parameters
and Monte Carlo dynamics of DNA were modeled following Vologodsky et al [49] with 2–5
rod segments per persistence length lp. Figure 9 demonstrates that the statistical properties of
the chain resemble those of an ideal polymer globule [50].

We used the subsequently obtained DNA conformations to simulate the search process.
The off-lattice simulations of diffusion were performed by using an efficient method widely
applied in simulations of diffusion-limited aggregation [46]. Results of these simulations are
presented in figure 10.
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Figure 10. Search inside a dense DNA globule. (A) The probability λ(s) of a jump between
two points that are distance s apart along the contour length of DNA for the globule (orange), the
Gaussian coil (blue) and stretched DNA (red). Note that for small s, the jumps in the globule are
less likely than for straight DNA since associations to other nearby DNA strands are possible in
the globule. For s > 103 nm, the jumps in the globule become uniformly distributed (close to 1/L,
dashed line), as assumed by the theory. The two regimes are well captured by the modified theory
(equation (9)). (B) The search time as a function of DNA length (at a constant DNA density).
Simulations (circles) are in good agreement with the original theory (solid line, equation (2)) which
assumes uniformly random jumps, but are in a much better agreement with the modified theory
(dashed line) which considers re-associations (equation (9); for this density Phop = 0.6 as obtained
from simulations). No fitting parameters were used. (C) Exponential distributions of the search
time (solid lines) are in perfect agreement with the theory (dashed lines, same cases and colors as
in (B)). The mean search time was calculated using equation (9). (D) The search time as a function
of the distance s along DNA between the target site and the initial position of the protein that was
also displaced 4 nm away from the DNA. The solid line is the search by one protein, the dashed
line is for 10 proteins searching simultaneously. Note that for 10 proteins the search is about
10 times faster and the region of fast searching extends up to ∼ 500 nm (1500 bps).

First, we examined the statistics of the jumps, i.e., the distribution of the DNA contour
length s between the dissociation and association points. Two regimes are observed. For small
s � lp < R0, the probability of re-association (hop) distance s away decays more rapidly than
that for straight DNA or a Gaussian coil, likely due to capture of the protein by a remote DNA
strand that is spatially close in a dense DNA globule. For s > R0, the probability distribution
approaches that of the uniform one. A broad cross-over region with correlated, non-uniform
re-associations is observed for the intermediate s.

Second, we tested whether our modified theory that takes into account hops can predict
the search time in the DNA globule. Results presented in figure 10(B) clearly demonstrate
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that the mean search time can be accurately predicted by the theory (equation (9)). Moreover,
the complicated shape of the jump statistics (figure 10(A)) does not lead to any deviations
from the linear dependence of the mean search time on DNA length: ts ∼ M , or deviations
of the first-passage time distribution from the exponential distribution (figure 10(C)). Thus,
correlated re-associations in the globule do not contribute significantly to the search dynamics.

Third, we studied distance dependence of the search time by initiating the search some
distance s along the DNA from the target site, and 4 nm away from the DNA. We found
(figure 10(D)) that at distances ∼n̄ the search is extremely fast, which is in agreement with our
observations using a simpler model that assumed short-range hops and long-range uniform
jumps (see above). The region of fast searching is extended considerably by re-associations if
several proteins are searching simultaneously.

Little is known about DNA organization inside the cell. Recent experimental studies
provide clues about statistical properties of such organizations [51], allowing studies of
protein–DNA search in complicated DNA arrangements to be undertaken.

6.4. Search on crowded DNA

Most theoretical studies assumed DNA to be fully accessible for protein binding. In a cell,
however, DNA is bound by numerous proteins (e.g. histones) that makes some regions partially
inaccessible to other proteins. Experimental efforts aimed at mapping nucleosomes [52, 53]
and detection of accessible DNA [54], suggest that only about 5–10% of eukaryotic DNA is
accessible. Here we summarize our recent study aimed to understand how the presence of
other DNA-bound proteins can affect a DNA-binding proteins search process. The details of
this analysis will be published elsewhere.

We considered other DNA-binding proteins and protein complexes such as nucleosomes
as immobile obstacles. Specifically we assumed that (i) bound proteins occlude binding to
the same region of DNA by the searching protein; (ii) obstacles stay at the same location for
times longer than the search time (see figure 11); (iii) a searching protein cannot slide by other
DNA-bound proteins; (iv) the rate of sliding and the energy of non-specific binding to regions
not bound by other proteins remain unaffected (see figure 11). The first two assumptions
are consistent with several experimental measurements of nucleosome stability and turnover
rates in vitro and in vivo [53, 52, 55]. It remains to be examined experimentally whether
sliding of one protein is obstructed by another DNA-bound protein or a nucleosome. We
also assume that the target site is not obstructed by other DNA-bound proteins and remains
accessible.

DNA-bound obstacles have two opposite effects on the search process: they affect the
search far from the target site (binding to non-specific DNA) and search in immediate vicinity
of the target.

The first effect is in sequestration of some fraction of nonspecific DNA. DNA occupied by
other proteins reduces the total length of accessible DNA, which can be taken into account by
replacing M with ϕM in equations (2). This also leads to increased duration of 3D diffusion
(i.e. search for non-specific DNA) from τ3D to τ3D/ϕ. Note that according to our assumptions,
τ1D is not changed by other DNA-bound proteins: they affect how far a protein can slide
(serving as reflective boundaries), but not for how long it stays on DNA. Taken together this
transforms original equation (2) into

t̄crowded
s = ϕM

λ
(τ3D/ϕ + τ1D), (10)

where λ is the new effective antenna length and τ3D is the mean duration of the spatial
diffusion computed based on the total concentration of DNA. For biologically relevant
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Figure 11. Search on crowded DNA. (A) Schematic presentation of the search on DNA
which has other proteins/nucleosomes that occlude binding and sliding by the searching protein.
(B) The increase in the search time as a function of the distance between DNA-bound
obstacles 
 symmetrically placed around the target site. The search time was computed using
equations (10) and (11) (solid line) and by direct simulations (symbols). (C) Optimal organization
of chromatin/nucleosomes on DNA that minimizes the search time (equations (10) and (11)) for
proteins poised to bind regulatory regions (shown in red). (D) An example of experimentally
observed nucleosome structure [52].

ϕ ≈ 0.1–0.01 and assuming that the majority of time is spent on DNA τ1D � τ3D, the
search can get ∼10–100 faster due to sequestration of nonspecific DNA.

The second effect, hampering of the sliding motion, is relevant only for the antenna
region leading to its reduction from n̄ to λ and slower search. If the distance 
 between the
hampering proteins surrounding the target site is less than n̄ then the antenna is reduced to
λ ≈ 
. If, in contrast, 
 � n̄, then the motion on the antenna is not affected: λ = n̄. By
considering symmetrically bound obstacles as reflective boundaries (figure 11) we calculated
the probability of sliding to the target before dissociation and obtained the expression

λ = n̄ tanh(
/n̄) ≈ min{
, n̄} (11)

which has all the right asymptotics discussed above. Figure 11(B) illustrates this effect as
a function of 
 (at ϕ = const) and shows a good agreement between this equation and the
simulations of search in the presence of site surrounded by two impenetrable symmetrically
located obstacles.

There are several interesting biological implications of these results. First, having a target
site between two nucleosomes spaced at 
 < n̄ make the search by a factor of n̄/
 slower.
This effect can be rather significant: ∼5–10 if we assume n̄ ≈ 250–500 and 
 ≈ 50, a typical
spacing between nucleosomes.

Second, since DNA-bound obstacles that hamper kinetics have no effect on equilibrium,
while increasing the search time, they also increase the residence time of the protein on its
cognate site. Microscopically this works by increasing the probability that a protein which
has slid away from its target will re-associate with the target before dissociating from the
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DNA altogether, preventing the protein that left its target site to slide away and increasing its
probability to re-associate with the target. The presence of DNA-bound proteins close to each
other can thus increase the lifetime of the complex by such a ‘jamming’ mechanism.

Third, the fastest delivery of regulatory DNA-binding proteins (transcription factors) to
their targets will be achieved if (i) 
 ≈ n̄ ≈ 250–500 bps of DNA in the vicinity of each
target are left unoccupied by DNA-binding proteins and nucleosomes, and (ii) the rest of the
DNA gets packed and made inaccessible for binding by regulatory proteins. Figure 11(C)
illustrates this optimal organization. Interestingly, recently obtained maps of nucleosomes
in a variety of organisms are very consistent with this picture (figure 11(D)): about 90–
99% of DNA is packed [52]and largely inaccessible [54], while regions of ≈300–500 bps
in the vicinity of target sites remain available for binding and nucleosome-free [52, 56].
Equations (10) and (11) allow calculation of the speed-up due to such organization of DNA.
The search is ∼10–100 times faster as compared to naked DNA (due to sequestration), and
about ∼3–5 times faster as compared to random placement of the same number of nucleosomes
on DNA, which would lead to ≈50–100 bps spacing.

7. Conclusions

Here we described our recent results that combine theory, simulations and single-molecule
experiments. We have presented a simple theory that provides intuition for the mechanism of
facilitated diffusion. This theory suggests the conformational transition in the protein–DNA
complex (so-called coupling of folding and binding) plays a crucial role, which is consistent
with a range of experimental observations. The 1D/3D nature of facilitated diffusion leads
to extremely fast searching that can be initiated ∼102–103 bps away, and thus, facilitated
diffusion is critical for expediting the protein-DNA search in bacteria where the search would
otherwise be rather slow. Spatial effects can be more accurately taken into account by minimal
modifications to the theory. Simulations of the search in a compact DNA globule demonstrate
that the theory provides precise answers for both the mean search time and the distribution
of search times. Our formalism can be extended to take into account interactions between
the searching protein and other DNA-bound proteins, suggesting a significant effect such
interactions can have in the cell. Effects of molecular crowding in 3D and on DNA, complex
DNA packing, and interactions with other proteins must be studied both theoretically and
experimentally to provide a more complete picture of the search process. As it is central to
many vital biological processes, the protein–DNA search problem will undoubtedly continue
fascinating biophysicists.
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